ID | Title | Difficulty | |
---|---|---|---|
Loading... |
139. Word Break
Medium
LeetCode
Array, Hash Table, String, Dynamic Programming, Trie, Memoization
Problem
Given a non-empty string s and a dictionary wordDict containing a list of non-empty words, determine if s can be segmented into a space-separated sequence of one or more dictionary words.
Note:
The same word in the dictionary may be reused multiple times in the segmentation. You may assume the dictionary does not contain duplicate words. Example 1:
Input: s = "leetcode", wordDict = ["leet", "code"]
Output: true
Explanation: Return true because "leetcode" can be segmented as "leet code".
Example 2:
Input: s = "applepenapple", wordDict = ["apple", "pen"]
Output: true
Explanation: Return true because "applepenapple" can be segmented as "apple pen apple".
Note that you are allowed to reuse a dictionary word.
Example 3:
Input: s = "catsandog", wordDict = ["cats", "dog", "sand", "and", "cat"]
Output: false
Code
class Solution {
public boolean wordBreak(String s, List<String> wordDict) {
Set<String> wordDictSet = new HashSet(wordDict);
boolean[] dp = new boolean[s.length() + 1];
dp[0] = true;
for (int i = 1; i <= s.length(); i++) {
for (int j = 0; j < i; j++) {
// 有一次成功就可以退出这次循环了
if (dp[j] && wordDictSet.contains(s.substring(j, i))) {
dp[i] = true;
break;
}
}
}
return dp[s.length()];
}
}
Time complexity : O(n^3) There are two nested loops, and substring computation at each iteration
Space complexity : O(n)
Recursion with memoization
class Solution {
public boolean wordBreak(String s, List<String> wordDict) {
return wordBreakMemo(s, new HashSet<>(wordDict), 0, new Boolean[s.length()]);
}
private boolean wordBreakMemo(
String s,
Set<String> wordDict,
int start,
Boolean[] memo) {
if (start == s.length()) {
return true;
}
if (memo[start] != null) {
return memo[start];
}
for (int end = start + 1; end <= s.length(); end++) {
if (wordDict.contains(s.substring(start, end)) && wordBreakMemo(s, wordDict, end, memo)) {
memo[start] = true;
return true;
}
}
memo[start] = false;
return false;
}
}
Time complexity : O(2^n) Space complexity : O(2^n)
按 <- 键看上一题!
138. Copy List with Random Pointer
按 -> 键看下一题!
140. Word Break II