JIAKAOBO

LeetCode

venmo
wechat

感谢赞助!

  • ㊗️
  • 大家
  • offer
  • 多多!

Problem

Given a matrix consists of 0 and 1, find the distance of the nearest 0 for each cell.

The distance between two adjacent cells is 1.

Example 1:

img

Input:
[[0,0,0],
 [0,1,0],
 [0,0,0]]

Output:
[[0,0,0],
 [0,1,0],
 [0,0,0]]

Example 2:

img

Input:
[[0,0,0],
 [0,1,0],
 [1,1,1]]

Output:
[[0,0,0],
 [0,1,0],
 [1,2,1]]

Constraints:

  • m == mat.length
  • n == mat[i].length
  • 1 <= m, n <= 10^4
  • 1 <= m * n <= 10^4
  • mat[i][j] is either 0 or 1.
  • There is at least one 0 in mat.

Code

64. Minimum Path Sum

BFS

class Solution {
    int[][] dirs = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};

    public int[][] updateMatrix(int[][] matrix) {
        int m = matrix.length;
        int n = matrix[0].length;

        Queue<int[]> queue = new LinkedList<>();
        boolean[][] visited = new boolean[m][n];

        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (matrix[i][j] == 0) {
                    queue.offer(new int[]{i, j});
                    visited[i][j] = true;
                } else {
                    matrix[i][j] = m + n;
                }
            }
        }

        int step = 1;
        while (!queue.isEmpty()) {
            int size = queue.size();
            
            for (int i = 0; i < size; i++) {
                int[] curr = queue.poll();
                
                for (int[] dir : dirs) {
                    int x = curr[0] + dir[0];
                    int y = curr[1] + dir[1];
                    
                    if (x < 0 || x >= m || y < 0 || y >= n) continue;
                    if (visited[x][y]) continue;
                    
                    matrix[x][y] = step;
                    visited[x][y] = true;
                    queue.offer(new int[]{x, y});
                }
            }
            
            step++;
        }
        
        return matrix;
    }
}

只能从上下左右四个方向来

class Solution {
    public int[][] updateMatrix(int[][] matrix) {
        int m = matrix.length;
        int n = matrix[0].length;

        int[][] dp = new int[m][n];

        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (matrix[i][j] == 0) {
                    dp[i][j] = 0;
                } else {
                    dp[i][j] = m + n;
                }
            }
        }

        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (i != 0) {
                    dp[i][j] = Math.min(dp[i][j], dp[i - 1][j] + 1);                    
                }

                if (j != 0) {
                     dp[i][j] = Math.min(dp[i][j], dp[i][j - 1] + 1);                   
                }
            }
        }

        for (int i = m - 1; i >= 0; i--) {
            for (int j = n - 1; j >= 0; j--) {
                if (i != m - 1) {
                    dp[i][j] = Math.min(dp[i][j], dp[i + 1][j] + 1);                    
                }

                if (j != n - 1) {
                      dp[i][j] = Math.min(dp[i][j], dp[i][j + 1] + 1);                  
                }
            }
        }

        return dp;
    }
}