698. Partition to K Equal Sum Subsets
Problem
Given an integer array nums and an integer k, return true if it is possible to divide this array into k non-empty subsets whose sums are all equal.
Example 1:
Input: nums = [4,3,2,3,5,2,1], k = 4
Output: true
Explanation: It's possible to divide it into 4 subsets (5), (1, 4), (2,3), (2,3) with equal sums.
Example 2:
Input: nums = [1,2,3,4], k = 3
Output: false
Constraints:
- 1 <= k <= nums.length <= 16
- The frequency of each element is in the range [1, 4].
Code
class Solution {
public boolean canPartitionKSubsets(int[] arr, int k) {
int sum = 0;
for (int i = 0; i < arr.length; i++) sum += arr[i];
if (sum % k != 0) return false;
return helper(arr, 0, k, sum / k, 0, new HashSet<>());
}
private boolean helper(
int[] arr,
int curr,
int k,
int target,
int currSelectedMask,
HashSet<Integer> selectedMask
) {
if (k == 1) return true;
if (curr > target) return false;
if (selectedMask.contains(currSelectedMask)) {
return false;
}
if (curr == target) {
boolean res = helper(arr, 0, k - 1, target, currSelectedMask, selectedMask);
selectedMask.add(currSelectedMask);
return res;
}
for (int i = 0; i < arr.length; i++) {
// 还没选过
if ((currSelectedMask & (1 << i)) == 0) {
currSelectedMask |= 1 << i;
if (helper(arr, curr + arr[i], k, target, currSelectedMask, selectedMask)) {
return true;
}
// 把这一位重新置0 相当于取消选择
currSelectedMask ^= 1 << i;
}
}
selectedMask.add(currSelectedMask);
return false;
}
}
- Time complexity:
- Space complexity:
按 <- 键看上一题!
697. Degree of an Array
按 -> 键看下一题!
699. Falling Squares