ID | Title | Difficulty | |
---|---|---|---|
Loading... |
97. Interleaving String
Medium
LeetCode
String, Dynamic Programming
Problem
Given strings s1
, s2
, and s3
, find whether s3
is formed by an interleaving of s1
and s2
.
An interleaving of two strings s
and t
is a configuration where s
and t
are divided into n
and m
substrings respectively, such that:
- $s = s_1 + s_2 + … + s_n$
- $t = t_1 + t_2 + … + t_m$
- $|n - m| <= 1$
- The interleaving is $s_1 + t_1 + s_2 + t_2 + s_3 + t_3 + …$ or $t_1 + s_1 + t_2 + s_2 + t_3 + s_3 + …$
Note: a + b
is the concatenation of strings a
and b
.
Example 1:
Input: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbcbcac"
Output: true
Explanation: One way to obtain s3 is:
Split s1 into s1 = "aa" + "bc" + "c", and s2 into s2 = "dbbc" + "a".
Interleaving the two splits, we get "aa" + "dbbc" + "bc" + "a" + "c" = "aadbbcbcac".
Since s3 can be obtained by interleaving s1 and s2, we return true.
Example 2:
Input: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbbaccc"
Output: false
Explanation: Notice how it is impossible to interleave s2 with any other string to obtain s3.
Example 3:
Input: s1 = "", s2 = "", s3 = ""
Output: true
Constraints:
- $0 <= s1.length, s2.length <= 100$
- $0 <= s3.length <= 200$
s1
,s2
, ands3
consist of lowercase English letters.
Follow up: Could you solve it using only $O(s2.length)$ additional memory space?
Code
s1 = “aabcc”, s2 = “dbbca”, s3 = “aadbbcbcac”
d | b | b | c | a | |||
---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | ||
0 | T | F | F | F | F | F | |
a | 1 | T | F | F | F | F | F |
a | 2 | T | T | T | T | T | F |
b | 3 | F | T | T | F | T | F |
c | 4 | F | F | T | T | T | T |
c | 5 | F | F | F | T | F | T |
class Solution {
public boolean isInterleave(String s1, String s2, String s3) {
int len1 = s1.length();
int len2 = s2.length();
int len3 = s3.length();
if(len1 + len2 != len3) return false;
if(len1 == 0 && len2 == 0 && len3 == 0) return true;
boolean [][] dp = new boolean[len1 + 1][len2 + 1];
dp[0][0] = true;
for (int j = 1; j <= len2; j++) {
if(s2.charAt(j - 1) == s3.charAt(j - 1) && dp[0][j - 1] == true) {
dp[0][j] = true;
}
}
for(int i = 1; i <= len1; i++) {
if(s1.charAt(i - 1) == s3.charAt(i - 1) && dp[i - 1][0] == true) {
dp[i][0] = true;
}
}
for(int i = 1; i <= len1; i++) {
for(int j = 1; j <= len2; j++) {
if(s1.charAt(i - 1) == s3.charAt(i + j - 1) && dp[i - 1][j] == true) {
dp[i][j] = true;
}
if(s2.charAt(j - 1) == s3.charAt(i + j - 1) && dp[i][j - 1] == true) {
dp[i][j] = true;
}
}
}
return dp[len1][len2];
}
}
按 <- 键看上一题!
96. Unique Binary Search Trees
按 -> 键看下一题!
98. Validate Binary Search Tree