| ID | Title | Difficulty | |
|---|---|---|---|
| Loading... | |||
97. Interleaving String
Medium
LeetCode
String, Dynamic Programming
Problem
Given strings s1, s2, and s3, find whether s3 is formed by an interleaving of s1 and s2.
An interleaving of two strings s and t is a configuration where s and t are divided into n and m substrings respectively, such that:
- $s = s_1 + s_2 + … + s_n$
- $t = t_1 + t_2 + … + t_m$
- $|n - m| <= 1$
- The interleaving is $s_1 + t_1 + s_2 + t_2 + s_3 + t_3 + …$ or $t_1 + s_1 + t_2 + s_2 + t_3 + s_3 + …$
Note: a + b is the concatenation of strings a and b.
Example 1:

Input: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbcbcac"
Output: true
Explanation: One way to obtain s3 is:
Split s1 into s1 = "aa" + "bc" + "c", and s2 into s2 = "dbbc" + "a".
Interleaving the two splits, we get "aa" + "dbbc" + "bc" + "a" + "c" = "aadbbcbcac".
Since s3 can be obtained by interleaving s1 and s2, we return true.
Example 2:
Input: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbbaccc"
Output: false
Explanation: Notice how it is impossible to interleave s2 with any other string to obtain s3.
Example 3:
Input: s1 = "", s2 = "", s3 = ""
Output: true
Constraints:
- $0 <= s1.length, s2.length <= 100$
- $0 <= s3.length <= 200$
s1,s2, ands3consist of lowercase English letters.
Follow up: Could you solve it using only $O(s2.length)$ additional memory space?
Code
s1 = “aabcc”, s2 = “dbbca”, s3 = “aadbbcbcac”
| d | b | b | c | a | |||
|---|---|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 | ||
| 0 | T | F | F | F | F | F | |
| a | 1 | T | F | F | F | F | F |
| a | 2 | T | T | T | T | T | F |
| b | 3 | F | T | T | F | T | F |
| c | 4 | F | F | T | T | T | T |
| c | 5 | F | F | F | T | F | T |
class Solution {
public boolean isInterleave(String s1, String s2, String s3) {
int len1 = s1.length();
int len2 = s2.length();
int len3 = s3.length();
if(len1 + len2 != len3) return false;
if(len1 == 0 && len2 == 0 && len3 == 0) return true;
boolean [][] dp = new boolean[len1 + 1][len2 + 1];
dp[0][0] = true;
for (int j = 1; j <= len2; j++) {
if(s2.charAt(j - 1) == s3.charAt(j - 1) && dp[0][j - 1] == true) {
dp[0][j] = true;
}
}
for(int i = 1; i <= len1; i++) {
if(s1.charAt(i - 1) == s3.charAt(i - 1) && dp[i - 1][0] == true) {
dp[i][0] = true;
}
}
for(int i = 1; i <= len1; i++) {
for(int j = 1; j <= len2; j++) {
if(s1.charAt(i - 1) == s3.charAt(i + j - 1) && dp[i - 1][j] == true) {
dp[i][j] = true;
}
if(s2.charAt(j - 1) == s3.charAt(i + j - 1) && dp[i][j - 1] == true) {
dp[i][j] = true;
}
}
}
return dp[len1][len2];
}
}
按 <- 键看上一题!
96. Unique Binary Search Trees
按 -> 键看下一题!
98. Validate Binary Search Tree